Semi-selective fatty acyl reductases from four Heliothine moths influence the specific pheromone composition
Background: Sex pheromones are essential in moth mate communication. Information on pheromone biosynthetic genes and enzymes is needed to comprehend the mechanisms that contribute to specificity of pheromone signals. Most heliothine moths use sex pheromones with (Z)–11–hexadecenal as the major component in combination with minor fatty aldehydes and alcohols. In this study we focus on four closely